
Introduction to Git for Research and
Software Project

By Eufrat Tsaqib

Download this presentation at:

eufat.github.io/docs/introgit.pdf

eufat.github.io/about

On Windows or Mac: https://git-scm.com/downloads
On Linux Ubuntu:

Do this before we start ...
1. Let’s install Git

2. Check newly installed git

3. (Optional) Check git repository browser “gitk”

4. (Optional) Create github account

https://git-scm.com/downloads

Presentation Outline

Chapter 0: Background
● Basic Versioning
● Basic Collaboration
Chapter 1: Git as VCS
● Overview
● Initialization and Configuration
● File Lifecycle (stage, commit)
● Log and Gitk
● Diff
● Head (with caret and tilde)
● Reset (soft, mixed and hard)
● Reflog

Chapter 2: Git as Collaboration
Tools
● Overview
● Branching
● Merge vs Rebase
● Blaming
● Remote Repository
Chapter 3: Git Supporting Tools
Chapter N: Your Next Chapter

Chapter 0:
Background

Basic Versioning
● Write document/program, save.
● Add numbering: (v1.2, 1-5, 2.3 dst).
● Add an “I feels like I am done” words

(A never ending of “final”, “complete”,
“done”.)

UnƓƫacƊƀƛlƞ
Bad ºƄƌƚƧtiƂ
UnƒƭruƂƭƔrƞƃ

Basic Collaboration
● Use email to send code or document: Use gmail, outlook etc.
● Use chat messaging app to collaborate: Copy-paste code to whatsapp, line

etc.
● Use cloud storage to collaborate codes: Use dropbox, google drive to

backup folders and share to the team.

Solution: Git

Git designed for text-based data.
ex: codes, books, papers, article etc.

Can be used with binary data (not to
useful): ex: music, image, executable etc.

Git ƈƒ NO» ÈitHƔƁ!

GitHub is a web-based hosting service
for version control using Git.

Chapter 1:
Git as VCS

Git as VCS: Overview
● VCS: Version Control System

records changes to a file or set of files over time so that you can recall
specific versions later.

● Distributed: Git could distributed to users that has the repo.
● Included in (most) Linux: Git preinstalled on Linux
● Widely used: Almost all tech companies use Git, even CERN use Git.
● Tiny and Fast: Git has small footprint and lightweight.
● Easy to learn: Git is easy to learn (but hard to master).
● A must known skill when applying to almost any software company on earth

Git as VCS: Configuration
Let’s set our username and email to git

After that we can view our configs with

Git as VCS: Initialization
This gonna be easy, create a new folder. Then, change the directory

So we can set a repository to the folder, by doing this

Git as VCS: Create a file
Let’s create a file named README.md and add some content to it

In Windows use this command, it should works the same

Git as VCS: Add and Commit
Now we have README.md, add that to “staging area”

“Commit” the file to repository

Git as VCS: File Lifecycle

$ git add README.md

$ git commit –m “Initial README.md”

Commit abc123: Add main.c

Commit def456: Update main.c
With cool function.

Commit lmn101: Fix main.c
From undefined variable.

Commit hij789: Update main.c
With infinite loop.

Commit opq112: Add recursive
Function to replace
infinite loop.

Git as VCS: Log
Edit the README.md file, add to staging, commit and view the log

Pº: PreƒƬ “q” to
quƈƓ ƥƨg ƕiƄư.

Git as VCS: Gitk
Lets view our history using gitk

Git as VCS: Diff
Diff takes two parameter either it’s a commit ids, files, or branches

Let’s use those two commit ids and check the diff between the old and new one

Git as VCS: Head
HEAD is a reference to the last commit in the current branch.

Note about caret (^)
and tilde (~)

^N is N-th parent commit.
~N is previous N commit.

Git as VCS: Reset
Reset provides you a way to reset to specified state. First, view our last commits

For example, we need to go back to
this state. To do so, copy the commit id

Now our current directory will go back to

Git as VCS: Reset
Now our current repo will go back to “Initial commit” state with changes on “A
new text in README” added to working directory.

This is the default mode, which called --mixed mode (move changes to working
directory).

Git as VCS: Reset

If we want a clean reset without something added to our working directory use
--hard mode.

If we want changes to be moved on staging area, use --soft mode.

Git as VCS: Reflog
Reflog provides history what action we’ve execute. You can also reset to certain
action you’ve made.

Let’s resurrect the “A new text in README” commit.

Git as VCS: Summary
● We use git config user.name “first last” and git config user.email

“name@domain.com” to set username and email
● Create a git repository using git init
● Add a new file named “README.md”
● Move the new file to “staging area” using git add filename
● Commit to repository using git commit -m “commit message”
● View the status of current git state using git status
● View the log of current branch using git log
● Browse the git repository using gitk
● See differences between two files using git diff one two
● HEAD is a reference of last commit on current branch
● Use git reset --mode commitid to reset to certain state
● View our actions using git reflog

Chapter 2:
Git as Collaboration Tool

Git as Collaboration Tool: Overview
● Collaboration features: Branching, Blaming, Merging, Rebasing etc.

● Remote repository options: GitHub, GitLab, BitBucket and DIY remote repo

● Share Projects: open source software, research, books etc.

Git as Collaboration Tool: Branching

● Usually there is a main line of
development of a project.

● Sometimes we want to add a
feature to the project.

● Branching provide us a way to not
mess around with the main line
while we working the feature.

Git as Collaboration Tool: Checkout
For example, we create a new branch called “checklist”. Use branch to create
new branch, use checkout to move to certain branch.

Let’s fill that file on checklist branch with a list.

Git as Collaboration Tool: Checkout
Okay, so for the tutorial purpose let’s move back to master branch.

Change the title from “ # Hey there” to “# Intro Git”.

Add all file to staging and commit it.

Git as Collaboration Tool: Checkout
Okay, so for the tutorial purpose let’s move back to master branch.

Change the title from “ # Hey there” to “# Intro Git”.

Add all file to staging and commit it.

Git as Collaboration Tool: Graph Log

Our branch diverged
right there.

To see our log with fancy branch line graph, just use --graph mode.

Pº: YoƔ cƚƍ aƥsƎ
usƄ GƢƓƤ foƑ ƭhƈƒ.

Git as Collaboration Tool: Merge vs Rebase

Git as Collaboration Tool: Merge
In our case, we can merge checklist branch to master using

Git will ask to enter a commit message regarding the merging.

Git as Collaboration Tool: Merge
After the merge has been done, this what our fancy branch graph shows us

Our branch merged
right there.

For tutorial purpose, please rewind our last action using git reflog and git reset
--hard actionid

The should be reverted and look like this now.

Git as Collaboration Tool: Rebase
With rebase, we place the new commit in targeted branch on the tail of current
branch.

Git as Collaboration Tool: Rebase
Using our handy graph log, the new checklist branch transform from left graph to
the right graph.

Git as Collaboration Tool: Blaming
Blame help you determine who made changes to a file or in a certain line.

Git as Collaboration Tool: Remote Repository

Remote Repository:
● GitHub: Great for open source,

paid for private repo.
● GitLab: GitHub alternative,

DIY Gitlab.
● BitBucket: Atlassian made,

free private repo.

https://education.github.com/students

https://education.github.com/students

Git as Collaboration Tool: Remote Repository
Sign in or sign up to GitHub, create new repo.

Git as Collaboration Tool: Remote Repository
Let’s add remote origin and push our local repo to remote repo.

Git as Collaboration Tool: Remote Repository
Voilà, we just created our remote repo.

Now, we can delete our local repo and clone our remote repo safely.

Chapter 3:
Git Supporting Tools

Git Supporting Tools
Interfacing and other tools
● GITK: Included git repository browser (https://git-scm.com/docs/gitk)
● Sublime Merge: All in one Git tools with user interface

(https://www.sublimemerge.com/)
● ZSH: shell terminal with git plugin (https://ohmyz.sh/)
● Visual Studio Code: Great editor with out-of-the-box git support

(https://code.visualstudio.com/)
● GitLens: Great git plugin for Visual Studio Code (https://gitlens.amod.io/)

https://git-scm.com/docs/gitk
https://www.sublimemerge.com/
https://ohmyz.sh/
https://code.visualstudio.com/
https://gitlens.amod.io/

Chapter N:
Your Next Chapter

● Use git in your thesis or other project
● To mastering git, read every bit of the documentation try each individually

and finally implement to your own project (https://git-scm.com/doc)
● Use supporting tools to help you cope with git complexities
● Contribute to open source projects on github, gitlab etc
● Teach others

This tutorial repo is on:
github.com/eufat/introgit

Your Next Chapter

https://git-scm.com/doc

